miércoles, 8 de diciembre de 2021

Descubren un nuevo método para producir electricidad con calor | Antiferromagnetismo aplicaciones | Materiales antiferromagnetismo | Antiferromagnetismo ejemplos


Antiferromagnetismo aplicaciones, termoelectricidad


¿Cómo producir electricidad del calor? Nuevo método

Un estudio referente a nuevos materiales antiferromagnéticos promete ser una mejora para obtener electricidad del calor residual, a diferencia por ejemplo del uso de los semiconductores en generadores termoeléctricos por efecto Seebeck, y de los ferroimanes convencionales, que producen campos magnéticos adicionales no deseados. Es un trabajo publicado en la revista Nature, y que fue realizado por el Instituto Max Planck, con colaboración de la Universidad de Ohio y la Universidad de Cincinnati.

Se intenta aprovechar un fenómeno conocido como efecto Nernst, que está también presente en  los ferroimanes comunes, pero en particular se explora las propiedades de nuevos materiales antiferromagnéticos que presentan de manera anómala este efecto que puede ser utilizado con fines más prácticos. Este efecto Nernst como afirman los expertos,  no debería de existir en estos materiales antiferromagnéticos, pero existe en gran medida en un nuevo material explorado, el YbMnBi2 (su fórmula química).

Anteriormente se había indagado que el efecto Nernst anómalo o ANE se podía producir en materiales ferromagnéticos, con lo cuál se lograba generar electricidad del calor, incluso sin la influencia de un campo magnético. Existe un parámetro conocido como fase Berry que se correlaciona con el ANE, y ésta a su vez lo puede incrementar en mayor cantidad.

Es bien sabido también que el ANE se relaciona con los momentos magnéticos, en especial en los materiales ferromagnéticos. Pero en lo que respecta a los materiales antiferromagnéticos nunca se sospechó de la presencia del ANE, y esto también debido a que en estos materiales los momentos magnéticos externos no son de ninguna manera evidentes o medibles, ni siquiera un campo, y esto también teniendo subredes magnéticas de compensación.

Volviendo a la observación y al estudio de YbMnBi2, este compuesto tiene un récord de ANE encontrado a diferencia de otros materiales antiferromagnéticos, este sería de alrededor 6 mV/K, y esto ocurre debido a un fuerte acoplamiento entre espín y órbita(esto gracias al Bismuto) y estructura de espín no colineal, así también la curva de la fase berry es diferente de cero. Y la topología también es otro factor a tomar en cuenta, aunque primero fue parte en el diseño de imanes.

Esta clase de nuevos materiales antiferromagnéticos, muestran también una buena conductividad eléctrica, pero también lo que llama la atención es que en particular en el compuesto YbMnBi2, es el factor de mérito (ZT) logrado que es anómalo y superior a la de todos los ferroimanes conocidos Pero sin embargo debe seguirse mejorando su rendimiento, aunque señalan, es más alto que el de los ferroimanes.

En síntesis, lo que buscan para aplicaciones más prácticas, es crear generadores termoeléctricos, en donde el flujo de electrones se desplace de manera perpendicular al flujo de calor, y con una estructura más simple que los actuales dispositivos comerciales.



¿Y cuáles son los materiales antiferromagnéticos? 

Son aquellos que presentan la propiedad de antiferromagnetismo, en donde los momentos magnéticos del material están ordenados en pares, en la misma dirección pero con sentido opuesto entre sí. Dan como resultado un magnetismo neto nulo, ya que ambos momentos del par tienen la misma intensidad. En cambio si un momento del par tiene diferente intensidad, se produce una reducción entre sí, pero si se extiende esto en todos los pares del material y se obtiene un momento magnético resultante grande nos referimos a un comportamiento de ferrimagnetismo (aunque se produzca por interacciones antiferromagnéticas), como el caso de la magnetita. Los momentos pueden quedar alineados de acuerdo a la intensidad y sentido de un campo magnético externo aplicado, incluso se puede llegar a anular el antiferromagnetismo, y quedar actuando como un imán permanente.

Otro aspecto que también hay que tomar en cuenta al momento de trabajar con materiales antiferromagnéticos, es la temperatura de Neel, aquella temperatura en la cual este material deja de ser antiferromagnético, para pasar a ser paramagnético. Y esta temperatura puede variar de acuerdo al material, o de acuerdo a sus características.



Opinión:

El efecto Nernst, se produce más comúnmente en semiconductores que en los metales, pero para este trabajo se descubrió un efecto Nernst inesperado en una sustancia que está compuesta solo de metales, lo que nos lleva extender este concepto, aparte del aporte que nos brinda este estudio con respecto al diseño de nuevos dispositivos termoeléctricos más simples y eficientes. 

Algo que no se mencionó, es si este método también se puede aplicar a la inversa, es decir producir diferencia de temperatura mediante el voltaje, y de haber esta posibilidad, se podría pensar tal vez en crear mejores dispositivos que las celdas Peltier, por lo menos en lo que respecta a simplificar su estructura.


Referencias:

https://www.infobae.com/america/agencias/2021/11/26/ciencia-nuevo-horizonte-para-producir-electricidad-del-calor-residual/

https://youtu.be/_t53LGmpWLA

https://youtu.be/yWaQ8mtWz-A

No hay comentarios.:

Publicar un comentario