domingo, 20 de marzo de 2022

Como hacer un detector de metales casero sin bobina | Detector de metales casero circuito | Detector de metales casero con radio receptor | Detector de metales características

Explicación:

Un detector de metales es un dispositivo utilizado para rastrear, buscar o detectar objetos de metal que por lo general se encuentran ocultos a nuestra vista, a veces bajo tierra, ya que de otra manera sería más complicado localizarlos. Su principio de funcionamiento se basa en la generación de campos electromagnéticos, estos pueden ser por pulsos o por radiofrecuencia, al interactuar estos campos con los objetos a detectar, se produce una interferencia, con la cual puede existir una variación de frecuencia, lo que se aprecia como una señal audible. Para este caso nos centraremos en los detectores de metales por radiofrecuencia (VLF).

Nuestro detector de metales usa como elemento principal un circuito tanque LC (inductor capacitor), este circuito es el que produce una oscilación en el rango de las frecuencias bajas de radio, esta radiofrecuencia puede ser ajustada mediante un capacitor variable. Entonces esta oscilación es trasmitida hacia el exterior a manera de onda electromagnética, y cuando se le acerque un objeto metálico, se produce la interferencia. Adicionalmente a este circuito se coloca una parte de detección, con lo cual se rectifica la señal en alterna, para que se convierta en una señal audible, y de esta manera lograr apreciar esta mediante un altavoz o parlante.

La lista de los materiales es la siguiente:

- Resistencia de 100 K

- 2 capacitores cerámicos de 10 nF

- Un capacitor variable

- 2 inductores fijos

- Transistor 2n3904

- Diodo 1n34a

- Capacitor cerámico 22 pF

- Un parlante a baterías

- Batería (VCC = 6 voltios)


Además, se podrá escuchar la señal en un receptor de radio. Futuramente se mostrará todo el proceso de implementación y de prueba de este dispositivo.


A continuación, mostramos el esquema del circuito por implementar:


Como hacer un detector de metales casero por VLF
    Diagrama del circuito detector de metales por VLF


Entonces como mencionamos antes, es el circuito tanque el que se encarga de la detección, por eso lo hemos delimitado en el diagrama del circuito como área de detección de los objetos metálicos, mediante el cuadro de líneas discontinuas. 

Un detector de metales comercial y funcional puede ser algo más complicado de hacer, y con un alcance más amplio, pero este sencillo circuito es suficiente para entender de mejor manera el funcionamiento de esta clase de dispositivos, sobre todo para aquellos que son algo principiantes en el campo de la electrónica y los circuitos de radiofrecuencia, es por eso también que se hará una actualización más completa mostrando el circuito funcionando.


Actualización:


A continuación mostramos el video donde se comprueba la implementación y funcionamiento del mismo:






Hemos primeramente conectado un pequeño parlante a baterías para poder escuchar la señal de detección, posteriormente usamos este mismo dispositivo para transmitir la señal de manera inalámbrica, la misma que es escuchada en un receptor de radio.

miércoles, 16 de febrero de 2022

UM66 | Timbre casero sin motor y a pilas | Amplificador de audio casero con transistor | Como hacer un timbre con un parlante

Traemos en esta ocasión un nuevo proyecto, de un timbre casero simple de hacer, que usa un pequeño efecto de sonido incorporado en un pequeño circuito integrado.




Tiene como principal ventaja el consumo de energía, y que además se activa solo mediante un pequeño pulsador, y además tiene un reducido tamaño.

Básicamente presentamos dos prototipos, el uno muy simple y es el que menos consume energía de los dos, y el segundo para un poco más de potencia, ambos se los puede hacer funcionar solo con pequeñas baterías.

Entonces para el primer prototipo propuesto el siguiente circuito sería este:


1.Timbre a pilas, con parlante y UM66
Circuito 1: timbre con parlante piezoeléctrico



Tenemos como elementos del circuito una batería de 3 voltios CR2016, un circuito integrado UM6632L, y un pequeño parlante piezoeléctrico. En lo que respecta al circuito integrado UM66 este es un generador de melodías, mejor dicho tiene grabado en su memoria una melodía. Si bien es cierto, pueda que este circuito integrado actualmente esté algo obsoleto y descontinuado, lo que dificulta poderlo encontrar fácilmente, la opción mas viable podría ser reciclarlo, ya sea de juguetes viejos, cajas musicales electrónicas, teléfonos, otros timbres viejos electrónicos, adornos musicales, etc.

2.Timbre a pilas, con parlante y UM66
Pines del circuito integrado UM66T32L


Otros datos que debes saber este circuito integrado son:

- Voltaje de operación (VDD): 1.3 a 3.3 voltios
- Corriente máxima consumida en operación: 60 microamperios
- Temperatura ambiente de operación: -10 a 60° C
- Frecuencia de oscilación aproximada: 65 kHz
- Pines: VDD (+), VSS(GND), O/P salida de audio
- Corriente de salida de audio (O/P): 600uA - 1.5 mA
- La numeración del circuito nos dice el tipo de melodía, esta va desde UM66T01L a UM66T68L, para UM66T32L esta es "Coo Coo Waltz".


3.Timbre a pilas, con parlante y UM66
Circuito integrado UM66T32L


En lo que respecta al primer parlante piezoeléctrico en el video, este fue el de sonido más bajo, pero se puede conectar si se desea un parlante piezoeléctrico de más potencia, sin ningún problema sonará mas fuerte con el mismo nivel de potencia de la pequeña batería, eso sí lo más recomendable será usar uno que sea pasivo o que no tenga sonido propio.

4.Timbre a pilas, con parlante y UM66
Parlante piezoeléctrico de baja potencia (video)



5.Timbre a pilas, con parlante y UM66
Otro parlante piezoeléctrico de más potencia




Y este otro circuito corresponde al siguiente prototipo, que consta de más elementos de accionamiento:

6.Timbre a pilas, con parlante y UM66
Circuito2: timbre con parlante común y corriente



Para este prototipo en cambio lo que hacemos es amplificar la señal de audio mediante el transistor, y una vez amplificada esta es escuchada en un parlante común y corriente, y que es de una mayor potencia que un parlante piezoeléctrico. Como elementos del circuito tenemos dos baterías AAA de 1.5 voltios no recargables, puestas en serie (3voltios), luego está el pulsador, un capacitor electrolítico de 47 uF, una resistencia de 220 ohmios, un led azul intermitente, el circuito integrado UM66T32L, una resistencia de 1 kilo ohmio, un transistor 2N3904, y un parlante o speaker normal con potencias de consumo que pueden variar de 1 a 5 vatios.



1.Amplificador de audio casero
Parlante 4 ohm, 3watts (video)




2.Amplificador de audio casero
Parlante 8 ohm 5 watts (video)




En lo que respecta al transistor, también se pueden tener resultados favorables de sonido, con el BC548B, S9013 y el TIP31C.

Para el parlante, en el video se ve que usa primero un parlante pequeño de 4 ohmios y 3 vatios, y luego uso uno mas grande de 8 ohmios con una potencia de consumo de aproximadamente 5 vatios. Ambos parlantes funcionan de manera adecuada con la misma configuración de circuito, y el consumo se podría decir que es algo menor a lo que exige cada parlante.

Otra opción es la de aprovechar solamente la parte de amplificación del circuito, esto con el fin de usar otro circuito integrado diferente (otro generador de melodías), o que solamente se lo utilice para amplificar algún otro tipo de sonido o solo se desee aprovechar esta salida de audio, entonces el circuito resultante sería el siguiente:



3.Amplificador de audio casero
Amplificador simple un solo transistor


De aquí lo que se hace básicamente es usar solamente la base del transistor y la parte común negativa de todo el circuito(GND), entre estos dos pines J1 y J2 está la entrada de audio, para cualquier audio que deseemos amplificar. La resistencia de la base 1k se la puede variar ligeramente hasta obtener la potencia de audio deseada. Cabe aclarar también que el audio a amplificar puede tener su propia fuente de energía y no necesariamente estar vinculado a la batería.

viernes, 17 de diciembre de 2021

Se inventa el primer osciloscopio óptico del mundo | Osciloscopio ondas | Ejemplos de uso del osciloscopio | Aplicaciones del osciloscopio en la ingeniería | Longitud de onda de la luz | Para que sirve la luz visible


Se inventa un osciloscopio capaz de medir ondas de luz


Investigación y desarrollo del primer osciloscopio óptico en la historia

Así como lo leen, y es que en una última publicación de la revista Nature Photonics, se muestra el trabajo  referente a lo que es la invención del primer osciloscopio óptico del mundo, esto es algo novedoso debido a que es muy complicado detectar el campo eléctrico de una onda de luz. Los osciloscopios convencionales o que la mayoría de estudiantes e ingenieros en electrónica usan, son solo capaces de detectar las frecuencias más bajas, ya sea de radio, microondas o que llegan a un rango máximo de Giga-Hertz, y es así que un equipo de trabajo de la Universidad de Florida Central desarrolló el primer dispositivo que es capaz de convertir las oscilaciones de una señal de luz en una señal eléctrica, para de esta manera poder ver en una pantalla como lo hacen los osciloscopios.

Es realmente un desafío poder detectar este campo eléctrico de la luz, debido a su alta frecuencia o velocidad a la que oscila, si tomamos en cuenta el espectro electromagnético, las radiaciones de luz visible oscilan en frecuencias del rango aproximado de Peta-hertz, pero es más coherente expresar estas cantidades en longitudes de onda, estas estarían comprendidas entre los 450 nanómetros a 750 nanómetros (o desde el ultravioleta al infrarrojo). Lo que se sabe actualmente, es que hay dispositivos que pueden detectar la luz solo mediante pulsos, pero no así los picos y valles de estos pulsos. Recae en gran importancia estas altas velocidades de oscilación que alcanza la luz, debido a que esto permite transmitir información en mayor densidad. Es también importante lograr detectar los picos y valles, ya que es allí donde se trabaja para colocar la información, mezclarla con la señal de luz o modularla de manera adecuada en esta portadora.

Para la comprobación de este dispositivo, se usó los pulsos de luces láseres individuales, para detectar los campos eléctricos en tiempo real. Según el profesor Michael Chini, quien es parte del equipo, las limitaciones de los osciloscopios convencionales se rigen a la velocidad en que detectan estas oscilaciones de la luz, pero este dispositivo que desarrollaron puede aumentar aproximadamente su velocidad en un factor de 10000, como señalan.

Como partes importantes de la investigación y desarrollo de este dispositivo tenemos el esquema de medición de disparo único, simulaciones, mediciones de la dependencia de fase envolvente de la portadora, otras mediciones, configuración experimental, recolección y análisis de datos obtenidos, para su posterior publicación.

Y lo que resta por hacer, según el equipo de UCF, es ver hasta donde se puede llegar, qué otros avances puede brindar tal velocidad alcanzada.


Opinión, posibles aplicaciones que se le puede buscar

Sin lugar a dudas esta investigación podría ser una gran revolución, traería grandes avances y se simplificarán muchas cosas, por ejemplo en el campo de las comunicaciones ópticas, pero más concretamente en las comunicaciones cuánticas, ya que recientes investigaciones proponen el uso de nanoantenas o antenas ópticas para más seguridad, entonces tener esta clase de osciloscopios a la mano permite estudiar con más detalle la respuesta que dan estos dispositivos a las señales ópticas, y continuar haciendo mejoras. Otro tipo de tecnología en la que podría volverse útil es en la creación de nuevos paneles solares, más eficientes, estos también podrían usar nanoantenas o algunos semiconductores más adecuados para aprovechar mejor la energía que se capta, se podría igualmente verificar en la pantalla del osciloscopio como se comportan los dispositivos ante la señal de luz solar en directo. Así mismo se podría trabajar de manera más eficiente con el osciloscopio en otros campos como la fotónica, espectroscopía, en la mejora de sensores ópticos, etc.


Referencias:

https://phys.org/news/2021-12-team-world-optical-oscilloscope.amp

https://es.wikipedia.org/wiki/Espectro_visible

miércoles, 15 de diciembre de 2021

Nueva placa de desarrollo Sparkfun Artemis Global Tracker para internet de las cosas mediante satélite | Sparkfun Iridium | Artemis Arduino | Sparkfun Artemis wifi

Internet de las cosas mediante placa Artemis Global Tracker


Una nueva placa de desarrollo, sacada al mercado por la empresa Sparkfun, funciona en cualquier parte del mundo, incluso en los polos, gracias a la posibilidad de conectividad con satélites Iridium, permite enviar y recibir mensajes de medición cortos, como de temperatura, humedad, la posición, internet de las cosas, entre otras. Se trata de Sparkfun Artemis Global Tracker. Así mismo cuenta con ciertas alternativas muy prácticas, en lo que respecta a la fuente de energía de este módulo así como también un bajo consumo.

Citando de manera general este módulo consta de las siguientes tres partes que son el receptor GNSS u-blox ZOE-M8Q, el módem o transceptor de satélite Iridium 9603 N y el sensor PHT TE MS8607. A continuación se detalla todos los componentes de esta placa de desarrollo:


- Transceptor Iridium 9603 N:

Gracias a su posibilidad de conexión con satélites Iridium, se logra establecer una cobertura global, este módulo también puede ser energizado sin ningún problema por dos supercapacitores de un faradio cada uno, y tiene un cargador exclusivo para ellos el LTC 3225. 


- Receptor GNSS u-blox ZOE-M8Q:

Proporciona el seguimiento de ubicación, este funciona a una altura máxima de 50000 metros, soporta una velocidad máxima de 500 m/s, una precisión horizontal de 2.5 metros, 72 canales de recepción, precisión de rumbo 0.3 grados y una precisión de velocidad de 0.05 m/s.


- Sensor PHT TE MS8607 (presión, humedad y temperatura):

En lo que respecta a la presión su rango de funcionamiento es de 10 a 2000 mbar con un margen de error de 2 mbar, en la humedad relativa su rango es de 0 a 100 por ciento con un margen de error de 3%, para la temperatura este opera entre -40 a 85° C con margen de error de 1° C.


-Procesador:

Posee una antena y radio BLE, memoria RAM de 384k, memoria flash de 1M, velocidades de 48 a 96 MHz, consumo de menos de 5 miliwatts.


-Energía:

Para la parte de energía se tiene incluidas baterías LiPo, Conector USB tipo C, lo que más llama la atención es la posibilidad de conectar un panel solar de hasta 6 voltios. 


-Otros aspectos:

Un conector Qwiic, conectores SMA para las antenas, control de carga de baterías LiPo MCP73831. Pines SPI e I2C, 5 pines GPIO, y 5 I/O digitales.



El módulo promete ser el que controle a todos al anteriores, según sus fabricantes, sus aplicaciones son muy variadas, para lugares remotos como montañas o desiertos, algunas aéreas también, hay más libertad de movilidad siempre y cuando el cielo se encuentre despejado para transmisión o recepción, alertas y control remoto de dispositivos de manera inmediata. 

Otro aspecto a destacar es el pago del servicio, para habilitar la conectividad con el satélite Iridium, este es de 17$ por cada mes que se vaya a usar, no es necesario un contrato anual. En cambio si se va a contratar un proveedor diferente a Iridium, habrá que pagar una tarifa de 60$ para el desbloqueo, se incluye también sistema de facturación.

La placa también se puede integrar sin ningún problema para lograr una comunicación satelital mediante Arduino. Hay también que registrarse en la página Rock7 para habilitar el servicio y vincular sus dispositivos a la red Iridium.

El costo de módulo Artemis Global Tracker ronda los 400 dólares (399.95$), ya está disponible en la tienda en línea de SparkFun, podrás encontrar también otros accesorios y dispositivos similares.

Mira también otro módulo 👈  que realiza una función similar, aunque este ya salió al mercado más antes, es también compatible con Arduino.

En fin, en resumidas este módulo es muy útil para muchas aplicaciones que requieren redes de sensores que se encuentran en lugares muy remotos, o así también para redes IoT muy amplias, que de otra manera tal vez 10 años atrás sería algo imposible lograr esto, es un buen justificativo para su costo, a parte que también hay que pagar por el servicio satelital. Esperemos también que con las nuevas tecnologías satelitales que están por venir, se reduzcan también los costos por estos servicios.


Referencias:

https://youtu.be/u2vDePRDPEE

https://www.sparkfun.com/products/18712

viernes, 10 de diciembre de 2021

¿Cómo almacenar energía renovable ? | 10 formas de almacenar la energía renovable | Sistemas de almacenamiento de energía renovable | Almacenamiento de energía renovable a gran escala


Almacenamiento de energía renovable a gran escala


Las 10 formas de almacenar la energía renovable

Las energías renovables tienen como principal característica, que son de disponibilidad intermitente, y además hay momentos en los cuales llegan a producir mucha energía, llegando a tener un flujo de energía sobrante, por tal motivo se pretende aprovechar esta energía de la mejor manera, hay quienes afirman que se puede vivir cien por ciento de ella, y además lo que se busca sobre todo es reducir las emisiones de CO2 y usar energía más amigable con el ambiente para así evitar el calentamiento global. Por lo tanto hay que buscar usar métodos que puedan almacenar esta energía a gran escala y de manera eficiente, es por eso que citaremos los más importantes:



Baterías de ion-Litio

Esta clase de baterías son las que más usamos comúnmente, pero también se puede extender este uso a gran escala, tal ejemplo de ello son las baterías desarrolladas por la compañía Tesla (Tesla Powerpack), que se las usa por ejemplo para el almacenamiento de energía producida de manera eólica.


Baterías con electrolito sólido

Estas serían una mejora de las actuales baterías de litio, ya que su electrolito líquido puede llegar a ser inflamable, por eso se lo sustituye por un electrolito sólido más adecuado. Tal ejemplo del desarrollo de este tipo de baterías son las que fabrican las empresas Ionic Materials y Toyota. 


Baterías de flujo

Otro tipo de tecnología, son las baterías de flujo, estas tienen dos clases de electrolitos diferentes para cada electrodo de la batería, además su capacidad de almacenamiento de energía es directamente proporcional a la cantidad del electrolito o el tamaño del tanque que lo contiene. También prometen dar alta eficiencia para el almacenamiento de energía


Energía térmica

Otra forma de almacenar energía es en forma de frío o calor, pero para esto se necesita de materiales o compuestos adecuados que pueden retener estos estados térmicos, por tiempos prolongados. Luego este estado térmico es convertido en electricidad o diferencia de voltaje. Estos materiales pueden basarse por ejemplo en carbono para retener calor.


Hidroeléctrica de bombeo

Este tipo de método es muy similar a la producción energía hidroeléctrica que todos conocemos, o igual en principio, pero con la diferencia de que se emplea la energía excedente producida por las centrales hidroeléctricas, para bombear más agua y almacenarla a una altura mayor, con el fin de utilizar si es necesario en algún momento de escasez, para hacerla caer y hacer girar turbinas y producir energía eléctrica nuevamente. Muchos la consideran la más óptima para almacenar la energía renovable a gran escala.


Energía potencial gravitatoria

Hacer caer objetos con el fin de aprovechar la energía potencial almacenada es otro iniciativa, es este caso lo que se hace es apilar objetos, como bloques de hormigón por ejemplo, en una torre que se va haciendo más grande, hasta alcanzar una cierta altura, y desde ahí se van haciendo caer los bloques y así hacer mover generadores. Es un proyecto llevado a cabo por la empresa Energy Vault, y se planea hacerlo trabajar en conjunto con plantas solares y eólicas .


Hidrógeno 

Este método se centra en la utilización del denominado hidrógeno verde H2, este hidrógeno se obtiene mediante electrólisis, el proceso de electrólisis en cambio obtiene energía procedente de otras fuentes renovables como energía solar o eólica. Este hidrógeno verde a su vez también puede ser usado después para almacenar energía, o como combustible. Otra aplicación del hidrógeno es la fabricación de fertilizantes.



Aire comprimido

El aire comprimido se obtiene mediante compresores o bombas, estos a su vez son impulsados por energía excedente de la red eléctrica u otras fuentes renovables, el aire se almacena bajo tierra, también se hace uso de otros sistemas de compensación. El uso que se le da al aire después de ser almacenado es muy similar a la energía hidroeléctrica por bombeo, para hacer girar turbinas y producir electricidad.



Aire frío o líquido

Esta iniciativa es algo parecida a la anterior, con la diferencia que ocupa menos espacio y se almacena aire frío a baja presión, además se reutiliza el frío y no solo el calor producido durante el proceso. El aire se extrae de la atmósfera, se lo limpia, se lo enfría y se lo licua, luego se almacena como aire líquido (no necesita estar bajo tierra), este aire se lo calienta para impulsar turbinas y producir electricidad. La planta igualmente entra operación, con energía excedente de otras plantas.



Baterías de hierro para almacenamiento de energía renovable

Tenemos básicamente dos tipos las de hierro aire y las de flujo que usan hierro. La primera se centra en una oxidación reversible del hierro, es decir al momento de descargarse el hierro se oxida, y al volverse a cargar, el óxido se vuelve a convertir en hierro, y el ciclo continúa. Esta batería promete ser muy eficiente y barata (el kilovatio hora cuesta 20 dólares suministrando energía por cien horas), pero tiene la desventaja de ocupar mucho espacio y ser pesada. Otra ventaja es que su electrolito líquido no es inflamable.

Las baterías de flujo de hierro, principalmente tienen un electrolito que consta de hierro, sal y agua, le que le da también la ventaja de no ser inflamable y ser barata. Se les ha logrado dar una vida útil de 25 años.



Referencias:

https://youtu.be/sQNwqgjp4bg

https://forococheselectricos.com/2021/11/las-baterias-de-electrolito-solido-seran-un-rival-de-futuro-para-el-hidrogeno.html

https://youtu.be/js4IxslSEZU

https://youtu.be/8K1UYwVXQ2I

https://youtu.be/fEXOUvH6kM0

https://youtu.be/R7en9_y_Vu4

miércoles, 8 de diciembre de 2021

Descubren un nuevo método para producir electricidad con calor | Antiferromagnetismo aplicaciones | Materiales antiferromagnetismo | Antiferromagnetismo ejemplos


Antiferromagnetismo aplicaciones, termoelectricidad


¿Cómo producir electricidad del calor? Nuevo método

Un estudio referente a nuevos materiales antiferromagnéticos promete ser una mejora para obtener electricidad del calor residual, a diferencia por ejemplo del uso de los semiconductores en generadores termoeléctricos por efecto Seebeck, y de los ferroimanes convencionales, que producen campos magnéticos adicionales no deseados. Es un trabajo publicado en la revista Nature, y que fue realizado por el Instituto Max Planck, con colaboración de la Universidad de Ohio y la Universidad de Cincinnati.

Se intenta aprovechar un fenómeno conocido como efecto Nernst, que está también presente en  los ferroimanes comunes, pero en particular se explora las propiedades de nuevos materiales antiferromagnéticos que presentan de manera anómala este efecto que puede ser utilizado con fines más prácticos. Este efecto Nernst como afirman los expertos,  no debería de existir en estos materiales antiferromagnéticos, pero existe en gran medida en un nuevo material explorado, el YbMnBi2 (su fórmula química).

Anteriormente se había indagado que el efecto Nernst anómalo o ANE se podía producir en materiales ferromagnéticos, con lo cuál se lograba generar electricidad del calor, incluso sin la influencia de un campo magnético. Existe un parámetro conocido como fase Berry que se correlaciona con el ANE, y ésta a su vez lo puede incrementar en mayor cantidad.

Es bien sabido también que el ANE se relaciona con los momentos magnéticos, en especial en los materiales ferromagnéticos. Pero en lo que respecta a los materiales antiferromagnéticos nunca se sospechó de la presencia del ANE, y esto también debido a que en estos materiales los momentos magnéticos externos no son de ninguna manera evidentes o medibles, ni siquiera un campo, y esto también teniendo subredes magnéticas de compensación.

Volviendo a la observación y al estudio de YbMnBi2, este compuesto tiene un récord de ANE encontrado a diferencia de otros materiales antiferromagnéticos, este sería de alrededor 6 mV/K, y esto ocurre debido a un fuerte acoplamiento entre espín y órbita(esto gracias al Bismuto) y estructura de espín no colineal, así también la curva de la fase berry es diferente de cero. Y la topología también es otro factor a tomar en cuenta, aunque primero fue parte en el diseño de imanes.

Esta clase de nuevos materiales antiferromagnéticos, muestran también una buena conductividad eléctrica, pero también lo que llama la atención es que en particular en el compuesto YbMnBi2, es el factor de mérito (ZT) logrado que es anómalo y superior a la de todos los ferroimanes conocidos Pero sin embargo debe seguirse mejorando su rendimiento, aunque señalan, es más alto que el de los ferroimanes.

En síntesis, lo que buscan para aplicaciones más prácticas, es crear generadores termoeléctricos, en donde el flujo de electrones se desplace de manera perpendicular al flujo de calor, y con una estructura más simple que los actuales dispositivos comerciales.



¿Y cuáles son los materiales antiferromagnéticos? 

Son aquellos que presentan la propiedad de antiferromagnetismo, en donde los momentos magnéticos del material están ordenados en pares, en la misma dirección pero con sentido opuesto entre sí. Dan como resultado un magnetismo neto nulo, ya que ambos momentos del par tienen la misma intensidad. En cambio si un momento del par tiene diferente intensidad, se produce una reducción entre sí, pero si se extiende esto en todos los pares del material y se obtiene un momento magnético resultante grande nos referimos a un comportamiento de ferrimagnetismo (aunque se produzca por interacciones antiferromagnéticas), como el caso de la magnetita. Los momentos pueden quedar alineados de acuerdo a la intensidad y sentido de un campo magnético externo aplicado, incluso se puede llegar a anular el antiferromagnetismo, y quedar actuando como un imán permanente.

Otro aspecto que también hay que tomar en cuenta al momento de trabajar con materiales antiferromagnéticos, es la temperatura de Neel, aquella temperatura en la cual este material deja de ser antiferromagnético, para pasar a ser paramagnético. Y esta temperatura puede variar de acuerdo al material, o de acuerdo a sus características.



Opinión:

El efecto Nernst, se produce más comúnmente en semiconductores que en los metales, pero para este trabajo se descubrió un efecto Nernst inesperado en una sustancia que está compuesta solo de metales, lo que nos lleva extender este concepto, aparte del aporte que nos brinda este estudio con respecto al diseño de nuevos dispositivos termoeléctricos más simples y eficientes. 

Algo que no se mencionó, es si este método también se puede aplicar a la inversa, es decir producir diferencia de temperatura mediante el voltaje, y de haber esta posibilidad, se podría pensar tal vez en crear mejores dispositivos que las celdas Peltier, por lo menos en lo que respecta a simplificar su estructura.


Referencias:

https://www.infobae.com/america/agencias/2021/11/26/ciencia-nuevo-horizonte-para-producir-electricidad-del-calor-residual/

https://youtu.be/_t53LGmpWLA

https://youtu.be/yWaQ8mtWz-A

viernes, 3 de diciembre de 2021

Comunicación cuántica ultra segura mediante nanoantenas | Información cuántica | Tecnología cuántica ejemplos | Tecnología cuántica 2021 | Telecomunicaciones cuánticas


Nanoantenas plasmónicas


¿Qué son las nanoantenas?

Las nanoantenas son una parte de la nanotecnología aplicada a la transmisión y recepción de radiaciones ópticas (principalmente), en lo que respecta a la recepción estas pueden ser de origen artificial o natural (como la radiación solar o la infrarroja). La nano antena se comporta como una antena común y corriente, o que todos conocemos en el ámbito de las radiocomunicaciones, con la diferencia que opera a frecuencias más elevadas, aproximadamente entre los Terahertz y un poco más allá. El parámetro que define muchas veces el tamaño de la antena es la longitud de onda, por tal motivo a frecuencias tan elevadas tendremos longitudes de ondas diminutas, a diferencia de frecuencias más bajas como las de radio o microondas, con las que se pueden trabajar con antenas que son más fácilmente visibles o de mayor tamaño. 

Los fines prácticos que se les ha estado buscando a estas antenas son por ejemplo espectroscopia no lineal, detección de luz visible o no visible, dispositivos fotónicos, manipulación de luz de campo cercano, en las telecomunicaciones, en estas ocasión nos centraremos más en este último aspecto. Otra aplicación interesante que se le puede dar estas antenas, es en la mejora de las celdas solares, al recolectar de manera más eficiente la radiación solar, a diferencia del silicio y otros compuestos químicos que también absorben la luz solar, pero esta clase de tecnología aún está en fase de desarrollo y será motivo de otra publicación más adelante; como se mencionó, solo nos centraremos en su aplicación a las telecomunicaciones cuánticas seguras.




Nanoantenas de plasmón de superficie para comunicaciones cuánticas

En los últimos años el desarrollo de las comunicaciones a adquirido vital importancia, esto debido a que en nuestro día a día ya son una herramienta indispensable, por tal motivo y debido a la globalización que se ha alcanzado, cada vez más personas están conectadas ya sea al internet o a las redes celulares, en fin, por tal motivo las redes de información necesitan ser cada vez más seguras, por lo cual se ha pensado también en implementar las tecnologías cuánticas a estas redes, para así crear medios de transmisión más confiables. La capa física es también una prioridad, y por tal motivo se ha pensado también en usar dispositivos de recepción más seguros y prácticos, un ejemplo de ello son las nanoantenas u antenas ópticas. Es así que un trabajo reciente desarrollado por investigadores de la Universidad de Osaka en Japón, busca el uso de esta clase de antenas que son nanoestructuras metálicas, para mejorar la conversión de fotón a electrón

Lo que se desea con estas últimas investigaciones es cambiar la forma clásica de transferencia de información mediante unos y ceros, o lectura solamente de encendido y apagado, por una lectura más complicada que consiste en el spin de los electrones y la polarización de fotones, dando así mayor seguridad y evitar intromisiones. Se pone énfasis en mejorar la absorción de los fotones en un factor de 9, ya que actuales tecnologías cuánticas que se usan en repetidores no son muy eficientes, en estas es más común el material arseniuro de galio. Luego de darse esta absorción de fotones así mismo se desea una conversión eficaz a electrones, para el caso de las nuevas antenas propuestas, estas serían unos anillos concéntricos hechos de oro. El propósito de estos anillos concéntricos es encaminar la luz a un solo punto, en el centro, conocido como punto cuántico, obteniendo así una diferencia o lectura de voltaje, detectando así un cambio, esto pasa muy desapercibido por los dispositivos de arseniuro. 

Los puntos cuánticos, son semiconductores de escala nanométrica que serían los que se encargan almacenar ese cambio de voltaje detectado, luego de ser transferido desde la antena. Lo que sería interpretado como el cambio de estado de los bits, entre unos y ceros, pero esto es de una manera cuántica. Además, señalan que no solo se obtiene electrones provenientes de los puntos cuánticos, sino también más electrones sobrantes que se distribuyeron por otras partes del dispositivo, pero no obstaculizan la lectura principal. Además, afirman de que la absorción puede mejorar teóricamente a un factor de 25.

Estas antenas nanométricas son las denominadas antenas de plasmón de superficie, y tienen la esperanza que se pueden usar para enlaces de comunicación (ópticos) de larga distancia seguros, o que hagan uso de propiedades cuánticas para transmitir información.



Referencias:

https://youtu.be/jhdwPoR7YJ8

https://scitechdaily.com/a-nanoantenna-for-long-distance-ultra-secure-quantum-communication/amp/

https://youtu.be/HhHLYJAkQn8