martes, 19 de marzo de 2024

Transmisor FM casero para sensor de humedad o lluvia

 

Circuito transmisor FM casero 1




Radio transmisor FM casero. Montaje de transmisor FM en protoboard. DIY transmisor FM en placa de pruebas. Transmisor FM ajustable en protoboard. Construcción de transmisor FM para sensor de humedad.
Transmisor FM de potencia baja






















Transmisor FM para sistema de alerta de humedad


Presentamos este proyecto de un transmisor FM en protoboard, o transmisor FM casero que se usa para trasmitir de manera inalámbrica la señal sonora de un sensor de humedad o lluvia, la cual se escuchará en un receptor de FM sencillo. El sensor se activa cuando se produce cierta continuidad entre unos electrodos debido a la humedad que llega al lugar en donde se los ha introducido, se los puede poner por ejemplo en tierra o en un recipiente a la espera de que se llene lo más pronto de agua. Es por eso que más adelante iremos detallando la construcción de transmisor FM casero, o su implementación.

El principio como ya se explicó es muy sencillo, recibiremos la señal de este transmisor de radio FM de bajo costo, en un receptor para FM, para lo cual iremos seleccionando o buscando una estación de radio en el dial que este vacía o que este lo más atenuada o con muy bajo sonido posible, partiendo de esto tendremos como dato la frecuencia a la que vamos a transmitir, a continuación veremos los pasos para hacer un trasmisor FM.



Cómo montar un transmisor FM en casa


Para la implementación de este transmisor FM de bricolaje en protoboard, hemos optado por esta opción de usar un protoboard debido a que queremos hacerlo de una forma lo más inmediata posible y así nos evitamos de estar soldando muchas conexiones, lo que si debes tomar en cuenta es que este protoboard sea de buena calidad o esté en buenas condiciones, para que así todas las conexiones se puedan hacer correctamente.

Siguiendo el esquema principal del circuito de más arriba vamos implementar los siguientes componentes en el protoboard, que los puedes encontrar fácilmente en cualquier tienda de electrónica.

Componentes necesarios para un transmisor FM casero:

- Tres transistores 2n3904 (Q1, Q2, Q3).
- Resistencia R1 de 1 kilo ohmio
- Resistencia R2 de 4.7 kilo ohmio
- Resistencia R3 de 10 kilo ohmios
- Resistencia R4 de 470 ohmios
- Resistencia R5 de 1 kilo ohmio
- Resistencia R6 de 4.7 kilo ohmio
- Resistencia R7 de 330 ohmios
- Una antena telescópica reciclada de un receptor de radio FM viejo(A1), se recomienda para esta aplicación extenderla a una longitud máxima de 75cm.
- Bobina L1 de 80 nano henrios con aproximadamente 3 espiras de alambre calibre 24, longitud de alambre es de 6.1 cm, diámetro interno de bobina de 7 mm, longitud de bobina enrollada es de 6 mm.
- Capacitor variable CV1 en tándem, de 7 a 50 pico faradios.
-  Batería de 9 voltios (VCC-GND)
- Capacitor electrolítico C1 de 1 micro faradio
- Capacitor electrolítico C2 de 1 micro faradio
- Capacitor electrolítico C3 de 1 micro faradio
- Capacitor cerámico C4 de 1 nano faradio
- Capacitor cerámico C5 de 22 pico faradios
- Electrodos: Dos tramos de cable muy delgado, calibre 22 por ejemplo, nos servirán para hacer los electrodos, se los debe pelar en la puntas.
- Para el área donde se va a detectar la humedad se usará recipientes pequeños, se explicará más adelante en un video.

Se usará también un pequeño soporte de madera, el cuál fue construido de manera sencilla pegando una tabla y pedazo de madera con silicona, este soporté servirá para mantener la antena erguida, esto también se verá en el video.






¿Cómo funciona el transmisor de FM?


Tenemos dos partes principales, un oscilador sonoro que hace uso principalmente de 2 transistores (Q1y Q2), de aquí salen los dos electrodos para detectar la humedad, si hay continuidad se activa el oscilador y se produce un señal sonora. La otra parte se la del trasmisor que funciona con un solo transistor (Q3), en donde se tiene vinculado un circuito tanque (L1 y CV1) que determina la frecuencia a transmitir, se puede ajustar la frecuencia mediante el capacitor variable en tándem, se lo gira hasta que la señal que se escucha en el receptor sea lo más fuerte y apreciable posible, se hace uso también de la antena telescópica para transmitir. 

Una vez que el oscilador detecta la humedad este produce una señal cuya frecuencia está dentro del espectro audible para el oído humano, esta señal activa la base de Q3 para así transmitir la señal por el aire, logrando una transmisión de audio con un transmisor FM hecho en casa.

PRECAUCIÓN: algo que hay que tener en cuenta es que el cable rojo saliendo de la base de Q1 y el cable verde saliendo de la base de Q2, nunca se tocan. Lo mismo con los cable celeste y violeta de los electrodos, no se tocan con ningún cable de abajo, solo cierran la continuidad con R3 en el caso de detectar humedad.

A este proyecto de electrónica casera se le puede encontrar alguna aplicación aún más práctica, como ejemplo, un transmisor FM para sistema de alerta de inundaciones, entre otros o también como un sistema de detección de subida de nivel de agua o algo así.

Algo que también es muy recomendable ver, las regulaciones legales para transmisores FM, en el caso que se requiera implementar este tipo de proyectos de manera más permanente, estas regulaciones o leyes pueden variar de acuerdo al país, en este caso si solo se implementa de manera experimental y a muy baja potencia, y por un corto tiempo no abría mucho problema, pero siempre es bueno estar al tanto de las leyes de regulación del espectro radioeléctrico.



Mira también:














jueves, 15 de febrero de 2024

El primer motor cuántico sin combustible IVO ya está en el espacio

Motor Cuántico Espacial


Motor cuántico espacial, IVO Aeroespace, propulsión cuántica, tecnología sin combustible


Se imaginan un motor que puede funcionar sin combustible, y más aún que quebrante las leyes de la física como las conocemos, suena a ciencia ficción verdad? Pero recientes noticias de diferentes fuentes señalan que se está llevando a cabo las pruebas de un satélite que está en órbita, el Barry-1, el mismo que fue lanzado el pasado 11 de noviembre de 2023 gracias al cohete Falcom9 de SpaceX para posicionarlo en la órbita baja de la Tierra, este satélite estaría llevando a bordo dos de estos motores cuánticos sin combustible, para dar propulsión. Esto que suena increíble por el momento se está probando en un satélite, pero se espera que en el futuro se lo implemente para los viajes espaciales tripulados, dando una innovadora y disruptiva forma de viajar, una revolución, estaremos rumbo hacia una era de exploración intergaláctica sin precedentes.



Según la empresa principal IVO Aerospace, que lleva a cabo este proyecto los motores logran cumplir este innovador propósito valiéndose de principios de Mecánica Cuántica. El equipo a cargo explica también  que se está desafiando las ideas tradicionales de la física clásica o los principios de movimiento establecidos por Isaac Newton, en donde un objeto o cuerpo se mueve en línea recta y a velocidad constante a menos que haya otro que lo empuje. Esta nueva idea se llama Quantized inercia cuyo autor es el Físico Mike McCulloch. Lo que se busca es ampliar la física tradicional y entenderla de mejor manera, y más no romper sus leyes convencionales, ver todo desde otro punto de vista (Física Cuántica).



Recalcando la otra característica principal del motor de IVO Quantum Drive (que no es un motor de curvatura o motor warp), el no uso de combustible  es un gran avance, ya que los motores tradicionales de cohetes y vehículos espaciales necesitan llevar almacenado dentro una gran cantidad de combustible, ya que se necesita generar un gran empuje, pero esto a su vez limita la autonomía y velocidad de los vehículos debido al gran peso, es por eso que el principio de Inercia Cuántica del motor lo que hace es alterar la masa de un objeto a través de campos eléctricos y magnéticos, logrando impulso cuántico. El motor es eléctrico y funciona con energía solar. Lo que se busca también es generar energía limpia para el movimiento de los vehículos, para una exploración espacial sostenible, ya que si se usa combustible se obtiene emisiones de gas contaminantes.

Ahora lo que se sabe es que ya se hicieron pruebas de laboratorio sobre el desempeño de los motores y este fue exitoso, y ya se efectúan las pruebas en situaciones reales en el satélite Barry-1 puesto en órbita, el mismo que esta siendo monitoreado. Se esperan obtener resultados más concluyentes en unos seis meses como máximo, comprobando si hubo cambio en la posición de la órbita del satélite. 


Opinión:

Este proyecto con tecnología de vanguardia, tiene un potencial revolucionario en la industria aeroespacial, pero obviamente estamos esperando los resultados de las últimas pruebas en situaciones reales para corroborar concluyentemente su efectividad, y saber las implicaciones para misiones tripuladas y no tripuladas, ya que las pruebas por el momento se las está realizando en un vehículo no tripulado.

Lo que se busca sobre todo es una eficiencia energética en el espacio, reducción de la dependencia de los combustibles fósiles, un medio de transporte limpio o libre de emisiones contaminantes, y obviamente el aspecto económico es algo que tampoco se ha descartado y que se tomará en cuenta, la ligereza y simpleza por la carencia de motores de combustión, son un ahorro significativo de recursos, dan un impacto en la economía espacial. Tendríamos un medio de transporte limpio, eficiente y más económico que los convencionales. Puede tomar más tiempo corroborar el verdadero desempeño de esta tecnología, sobre todo luego de ciertos años estando en servicio.


Fuente:

-Enséñame de Ciencia

-YouTube


Mira también:

👉 -Grafeno y su uso en la computación cuántica, otros uso del grafeno.

👉 -Superconductores exóticos para mejorar computación cuántica.

👉  -Antigravedad mediante levitación.

👉 -10 formas de almacenar energía renovable.

viernes, 9 de febrero de 2024

Nueva forma de entrar al router no más 192.168.1.1

¿Cómo configurar un router? Adiós 192.168.1.1


Como configurar un router wifi desde el celular


Desde hace mucho tiempo la forma típica de entrar a la configuración de un router wifi siempre ha sido a través de una dirección IP, como por ejemplo poner en el navegador 192.168.1.1 ó 192.168.0.1, para que luego se despliegue una interfaz de administración del router donde ingresaremos todas las credenciales correspondientes como nombre usuario y contraseña. Esta forma de entrar debió causar dolor de cabeza a muchas personas, como intentar recordar el número de la dirección IP principal del router, y peor aún el nombre de usuario y contraseña.

La forma habitual de ingresar al enrutador puede traer dificultades a los principiantes, por esta razón la organización internacional de Internet ICANN (Corporación de Internet para la Asignación de Nombres y Números) propone una nueva forma de ingresar al enrutador, para hacerlo más fácil.

Según se indicó, esta propuesta de ICANN será bien recibida y viable para su implementación, y lo que se busca no sólo es su uso para el router, sino también para otros dispositivos como un Smart TV, electrodomésticos y dispositivos IoT. Lo que se busca es crear un dominio de primer nivel para una administración más sencilla para esta clase de dispositivos.

Ahora detallando el funcionamiento, se planea usar direcciones dedicadas, haciendo uso del dominio .internal, es decir una dirección dedicada para algún dispositivo de red o que se conecte a internet, tales como el router wifi, pero que la misma termine en .internal, siendo de esta forma más fácil recordar el proceso de ingreso a la configuración o administración del dispositivo conectado a internet.

Según se afirma, esta solución podría empezar a implementarse los próximos meses, serán sobre todo los fabricantes quienes incorporen este cambio para el acceso de estos dispositivos, pero aún no está confirmado al ciento porciento.


Opinión:

Al hacer más sencillo el proceso de ingreso a la configuración del router, o acceso al mismo se debe precautelar la seguridad (cyber seguridad o seguridad wifi), para evitar alguna intromisión no deseada a la red local o LAN. Esto es algo que aún no se aclara  del todo al momento de llevar a cabo esta iniciativa, sobre todo hay cierto riesgo en la configuración inalámbrica del router.

Pero la ventaja es que será mas fácil la gestión de redes wifi, permitiendo ingresar de manera más inmediata sobre todo a los ajustes avanzados del router.


Fuente:

Computerhoy


Mira también:


👉  - Antena biquad para Wi-Fi, direccional de largo alcance.

👉   - Computación cuántica

👉  - HFC: Diseño y configuración 

👉   - Sistema de detección de incendios forestales mediante IoT


miércoles, 26 de julio de 2023

Como hacer un receptor de radio FM casero sencillo | Circuito receptor de radio FM

Receptor de radio FM casero

El término FM se refiere a la modulación de frecuencia que se usa en el servicio de radiodifusión comercial, comprendido entre las frecuencias 88 a 108 MHz. Conocido también como frecuencia modulada, con el fin de mejorar la calidad de recepción en comparación al servicio de radiodifusión AM (0.5 a 1.7 MHz), que es de amplitud modulada y es más susceptible a interferencias.

Por lo tanto este proyecto de electrónica casera, se centrará en la recepción de las frecuencias FM mencionadas, o mejor dicho en un sintonizador de radio FM casera. Se lo ha desarrollado para que sea lo más entendible posible y entretenido, posteriormente también se mostrará su funcionamiento, para corroborar su efectividad, aunque de antemano diríamos que talvez no se acerque a un radio receptor comercial, pero si sirve para entender por lo menos el funcionamiento básico de los receptores de radio, y de cuales son sus componentes. Nos enfocamos sobre todo en la Electrónica para principiantes, y también para estudiantes de nivel medio.


¿Cómo hacer un radio FM?

En esta publicación se explicará la implementación y el funcionamiento de este proyecto de electrónica casera, de un sencillo receptor de radio FM.


Empezamos mostrando el diagrama del circuito de nuestro receptor:


Radio FM de bajo costo. Circuito del receptor regenerativo.
Circuitos de radio FM


Componentes para receptor de radio FM:

- Antena ANT1, antena telescópica con longitud máxima de 1.2 metros.

- Inductancia L1 de 80 nano henrios, aproximadamente 3 espiras, alambre calibre 24 AWG, longitud de alambre de 6.1 cm, diámetro interno de la bobina de 7 mm, longitud de la bobina 6 mm.

- Capacitor variable tandem C1 de 50 a 7 pico faradios. También se puede usar capacitor tipo Trimmer para estos hay un código de colores de acuerdo a su capacitancia.

- Capacitor electrolítico C2 de 100 microfaradios

- Capacitor cerámico C3 de 10 nano faradios

- Transistores npn Q1 y Q2 2N3904 (reemplazo bc548, bc547).

- Resistencia R1 de 10 ohmios.

- Capacitor electrolítico C4 de 100 microfaradios.

- Potenciómetro POT1 de 10 kilo ohmios.

- Circuito integrado o amplificador operacional lm386.

- Capacitor electrolítico C5 de 10 microfaradios.

- Capacitor electrolítico C6 de 470 microfaradios.

- Capacitor electrolítico C7 de 220 microfaradios.

- Capacitor electrolítico C8 de 47 microfaradios.

- Capacitor cerámico C9 de 100 nano faradios.

- Capacitor cerámico C10 de 10 nano faradios.

- Capacitor electrolítico C11 de 47 microfaradios.

- SPK1 parlante de 8 ohmios.

- VCC-GND: pilas o batería, con voltaje de entre 9 y 12 voltios.


Radio FM DIY | Receptor de radio FM casero
Bobina circuito tanque L1 (sección circular)


Radio FM DIY | Receptor de radio FM casero
Bobina circuito tanque L1(vista lateral)


Radio FM DIY | Receptor de radio FM casero
Capacitor en tándem C1


Antena telescópica | Radio FM DIY | Receptor de radio FM casero
Antena de radio FM casera


En lo que respecta al funcionamiento tenemos básicamente 3 partes que son, la de sintonía formada por antena y circuito tanque (L1,C1 y antena), la de detección y pre amplificación regida por los transistores Q1 y Q2 junto con sus componentes aledaños (hay también una parte de regeneración de señal o realimentación vinculada al circuito tanque que sale de Q2), y por último la parte de amplificación haciendo uso principalmente del circuito integrado LM386.

La señal es detectada a través de la antena, donde es filtrada por el circuito tanque (filtro pasa bandas de segundo orden), luego es detectada por el transistor Q1 para luego ser pre amplificada y salir del transistor Q2, de ahí entra al circuito integrado LM386 a través de C4 y el potenciómetro POT1 (control de volumen), luego de ser amplificada la señal esta sale del LM386 y se escucha en el parlante.

Mira la implementación y prueba de este receptor regenerativo FM, en este video:

 



martes, 25 de abril de 2023

Timbre casero inalámbrico con circuito integrado UM66 sin Arduino amplio alcance

¿Cómo hacer un timbre inalámbrico casero simple sin programación?

En esta ocasión presentamos un pequeño proyecto de electrónica y tecnología de radiofrecuencia, haciendo uso de los típicos módulos RF 433 MHz, transmisor y receptor, para crear un timbre inalámbrico muy sencillo de hacer, y con bajo consumo de energía.

Así es, nuestro proyecto usa la transmisión inalámbrica de sonido proveniente de uno de los circuitos integrados cuya numeración es UM66, conocido también como un pequeño generador de melodías de baja tasa de bits, cuya tecnología es CMOS. Entonces se empieza haciendo accionar el timbre mediante un pulsador, entonces se activa el dispositivo transmisor, el circuito UM66 es energizado y la señal de sonido que produce circula hacia le entrada de datos del módulo RF transmisor, que también está energizado, y así se logra trasmitir por el aire la señal de sonido modulada en esta portadora de radiofrecuencia. Luego la señal modulada es receptada en otro dispositivo, en el cual entra primeramente en acción el módulo RF receptor 433 MHz, que capta y demodula la señal de audio o sonido, para luego enviar a una pequeña etapa de amplificación muy básica usando un solo transistor para accionar un parlante de baja impedancia, y que permitirá escuchar el sonido recibido. También podría ser necesario la implementación de lo que se conoce en electrónica como filtro pasa bajas RC (resistencia y capacitor) para una mejor captación de señal sonora y tratar de mitigar inferencias.

Y es así como si fuera un control remoto, que accionamos el timbre, estando separados el transmisor y el receptor a una determinada distancia incluso sin línea de vista directa entre ambos. En este caso los módulos RF 433MHz usan antenas omnidireccionales, quiere decir que irradian la radiofrecuencia en 360 grados, lo cual también facilita un poco las cosas, podríamos estar en cualquier dirección y lograremos activar el timbre, claro siempre y cuando la intensidad de la señal sea buena y el entorno favorezca a esta comunicación.


A continuación se mostrará el diagrama de los circuitos para este proyecto de electrónica:


Um66, DIY Electrónica, Control remoto, Módulos RF 433 MHz, DIY Hogar y jardín, um66 ic circuit diagram doorbell
Diagrama del Trasmisor


Um66, DIY Electrónica, Control remoto, Módulos RF 433 MHz, DIY Hogar y jardín, um66 ic circuit diagram doorbell
Diagrama del receptor


En resumidas cuentas los materiales para este proyecto de electrónica serían los siguientes:
1. Transmisor:
  - Módulo RF 433 MHz transmisor
  - Resistencia R1 de 1kilo ohmio
  - D1 es un diodo Zener para 3.3 voltios (1N4728A)
  - SW1: Recalcar que es un pulsador, no un swich fijo
  - Circuito integrado UM66T32L

2. Receptor:
  - Módulo RF 433 MHz Receptor
  - Capacitor C1 de 0.01 uF
  - Capacitor C2 de 10 uF
  - Capacitor C3 de 470 uF
  - Capacitor C4 de 470 uF
  - Resistencia R1 de 1 kilo ohmio
  - LED 1 color rojo (de los grandes)
  - Transistor bc548 (ó bc547)
  - Speaker o parlante de 8 ohmios, es un poco grande.

Cabe recalcar también que ambos circuitos van energizados con baterías, la antena del transmisor no fue posible ponerlo en el esquemático, sirve soldar un simple alambre de 17 cm de longitud, si se desea se puede poner en el receptor también. Es recomendable que los alambres de las antenas estén completamente estiradas  y en vertical, para un mayor alcance.

Algo más que no se mencionó en los materiales, es que las baterías son de 9 voltios, comunes y corrientes, pero hay dos etapas de regulación, una en el transmisor mediante diodo Zener para alimentar el circuito um66 y otra en el receptor que no está incluida en el circuito, y que reduce el voltaje de operación de todo el receptor a 5 voltios mediante L7805. Si se dese aumentar el alcance es recomendable solo aumentar voltaje en el transmisor máximo 12 voltios, y así mismo aumentar el valor de R1 en este.

En el circuito del receptor, R1 y C1 vienen a ser los componentes principales del filtro pasa bajos, hay que notar también que a la salida hay conectado un led que nos da también una alerta visual, y luego hay una señal es escuchada en el parlante, al activarse la base del transistor con lo que es también amplificada.

Este timbre inalámbrico puede ser implementado también en el hogar. También se lo puede usar para tener de referencia un señal de aviso, algo así como un modo muy básico de comunicación que no es bidireccional.

Existe también la opción de usar otros circuitos generadores de sonido en lugar del circuito integrado UM66, una de ellas puede ser usar un 555 como en este proyecto👈, o si deseas puedes buscar otra opción de circuito generador de melodías.

Algunas ventajas por mencionar serán que puedes usar este timbre de manera portátil y no necesitas conocimientos de programación de microcontroladores o Arduino para implementarlo, dando también un consumo más bajo de energía.

En el siguiente video podrán ver el circuito ya implementado, y su funcionamiento.



Mira también sensor de humedad o sensor de lluvia inalámbrico 👈

martes, 17 de enero de 2023

Circuito receptor de radio AM | Como se hace un receptor de radio en protoboard | Onda media radio

Receptor de radio AM

Un receptor de onda media para radiodifusión AM (amplitud modulada), es aquel que permite captar las señales de radiofrecuencia entre los 530 y 1710 kHz para América (en el resto de países son frecuencias muy similares), obteniendo principalmente una señal audible de distintas emisoras de radio comerciales. Estas ondas tienen una desventaja de ser inestables o susceptibles a diferentes interferencias como ruido atmosférico, ruido eléctrico producido por el hombre, condiciones de clima, etc. Es por eso que en un solo día puede haber distintas variaciones de señal, en la noche la propagación es mejor debido a la reflexión con la ionosfera.

Los receptores de radio AM son una forma básica de aprender a hacer radio receptores, es por eso que en el siguiente proyecto veras que es posible crear una radio AM casera con pocos componentes electrónicos y fáciles de conseguir.

En esta publicación se detallará el diagrama del circuito, junto con los elementos o componentes electrónicos que se emplearon para la creación de este proyecto, radio am casera.



Como hacer un receptor de radio AM casero con transistores


El diagrama del circuito es el siguiente:


Radio frecuencia modulada circuito
Diagrama de radio de transistores am












Los materiales para construir el receptor de radio serían los siguientes:

- CV1 Capacitor variable tandem 6-70 pF

- C2 Capacitor 22 pF (o variable)

- C1 Capacitor cerámico de 100 nF

- C3 Capacitor cerámico 220 nF

- C4 Capacitor cerámico 100 nF

- C5 Capacitor electrolítico 470 uF

- R1 resistencia de 1 Mega ohmio

- R2 resistencia de 4.7 kilo ohmio

- L1 y L2, dos inductores fijos de 680 uH cada uno (total 1360)

- Parlante o speaker que puede tener entre 3 y 8 ohmios

- 3 transistores 2N3904

- Una antena de longitud opcional

- Un protoboard

- Cables para protoboard

- 2 Baterías de 1.5 voltios AAA o AA

- Un sócalo para para baterías AAA o AA

- Caimanes

- Un interruptor para cambiar de posición la conexión de antena (opcional), o solamente mover el cable al otro terminal del protoboard


En el siguiente video podrás evidenciar los resultados obtenidos:




domingo, 11 de diciembre de 2022

Baterías de estado sólido últimas noticias | Primera batería de estado sólido para hogar | Precio

Baterías de estado sólido


Baterías de estado sólido vs litio



Una clase de baterías muy usadas durante varios años son las baterías de iones de litio, empleadas en pequeños dispositivos electrónicos como celulares, hasta en coches eléctricos, han empezado ha quedar posiblemente opacadas por otro tipo de tecnología conocidas como baterías de estado sólido. Y es que uno de los principales inconvenientes de las baterías de litio es la seguridad, ya que cuando estas entran en cortocircuito, existe el peligro de una explosión, este cortocircuito puede incluso ocurrir de manera natural, al crecer las dendritas desde el ánodo y entrar en contacto poco a poco con el cátodo. En las baterías de estado sólido no ocurriría tan fácilmente este crecimiento de dendritas.

La diferencia principal entre las baterías de iones de litio y las de estado sólido, es que el electrolito que comunica ánodo con cátodo en la primera es un líquido, y en la segunda es un sólido.

Entre las principales ventajas de las baterías de estado sólido, tenemos una mayor densidad energética, puede funcionar sin ningún problema a temperatura ambiente, si la temperatura es muy baja el electrolito de la batería no se congela puesto que es sólido, su costo de producción es menor, se obtiene un mayor voltaje por cada celda (unos 5 voltios), tiempo de carga menor, mayor durabilidad (tres veces más), un tamaño menor que las baterías de litio, y mayor seguridad.


Baterías de estado sólido de que están hechas

La estructura de las baterías de estado sólido es muy similar al de las baterías de litio, se compone de dos electrodos (ánodo - y cátodo +), un electrolito que sirve como conductor de los iones que se desplazan entre ambos electrodos, el electrolito en las baterías de litio es un líquido, mientras que en las otras es un sólido; este electrolito sólido puede ser de diferentes tipos como electrolitos de cristal, nano hilos de oro, polímeros sólidos. La principal diferencia entre estas baterías es que en las de estado sólido, prácticamente se ha suprimido el ánodo, solo existe una substancia o electrolito en la parte del cátodo, luego está el separador cerámico, y solamente una placa metálica para el ánodo (Litio metal).


Baterías para auto
Estructura de baterías



Baterías para coches

En el campo automotriz, y en especial de los coches eléctricos, el uso de las baterías en los mismos empezó con las baterías de litio, esto a su vez ha implicado una serie de inconvenientes, como por ejemplo costo económico, seguridad, peso del auto, tiempo de carga, entre otros; es por eso que las baterías de estado sólido son una tecnología que promete una solución al respecto. Un ejemplo de ello es la empresa Toyota que presentó un prototipo de automóvil funcionando con baterías de  estado sólido en el año 2019, que posteriormente fue probado y tuvo éxito, aunque su comercialización a gran escala está a poco tiempo de ocurrir (en 2028). No es la única compañía que ya ha empezado a abandonar la etapa de ensayo o prueba, con resultados que parecen ser prometedores, por ejemplo Quantum Scape, Theion, Solid Power. Además lo que se busca es sustituir el níquel y el cobalto, materiales difíciles de obtener, con costos ambientales, de salud, y de explotación laboral. Hay un obstáculo que aún atraviesan las baterías de estado sólido y es la escalabilidad, ya que la mayoría de tecnologías por el momento son compatibles con baterías de electrolito líquido, hay también otro tipo de tecnologías de baterías que prometen ser innovadoras.



Llegan las primeras baterías de estado sólido para hogar

Baterías de estado sólido para cuando

Otra importante aplicación que se les puede dar a las baterías de estado sólido, es para suministro doméstico, en especial para hogares o viviendas, mejorando las que ya están disponibles en el mercado, como es el caso de las baterías de celdas LFP. Es así que la empresa norteamericana Amptricity, anuncia la creación de estas baterías de electrolito sólido para el hogar. 

Las nuevas baterías tendrían una densidad energética mayor que las actuales comerciales, esta sería aproximadamente 377 Wh/kg, y con tamaño más reducido. Afirman también que la vida útil de este tipo de baterías será mayor, es por eso que el fabricante da una garantía de 25 años.

Las capacidades de almacenamiento energético disponibles para este tipo de baterías serían de 12, 24, 36, 48 y 60 kWh, la energía suministrada sería muy abundante, por ejemplo la de 60 kWh puede servir para varias viviendas. Existe la opción también de actuar como baterías modulares, es decir se puede conectar en paralelo hasta varias de ellas para suministrar aún más energía.

Un aspecto poco agradable que hay que tomar en cuenta con este tipo de baterías es el precio, ya que el mismo por unidad y de acuerdo a la capacidad sería de entre 19.990 dólares, hasta los 73.990 dólares. Se espera que conforme se vaya teniendo más acogida en el mercado, su precio irá bajando de manera significativa.

Según el fabricante estas baterías se empezarán a comercializar a inicios de 2023.



Análisis

De acuerdo a lo citado anteriormente, un aspecto muy importante a considerar en estas baterías, es el costo, aunque de acuerdo a lo consultado sobre todo en lo que respecta a baterías para coches, no hay un rango precios claro, se afirma solamente en base a lo experimental que el costo será menor que las baterías de litio, sin embargo para las baterías para hogares ya se puede adelantar cifras, pero esto puede ser desalentador, habrá que esperar a que ya se las comercialice de manera oficial, una vez transcurrido cierto tiempo, ver si este costo realmente logra ser menor a lo prometido anteriormente. 

Igualmente para el resto de ventajas y soluciones que ofrecen estas baterías, habrá que esperar para ver que tan eficaces son realmente para satisfacer la demandas y necesidades de los consumidores, una vez adquiridas.

Si quieres conocer más sobre baterías y supercondensadores, da clic en el siguiente enlace:

Baterias vs supercondensadores  👈